Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Biosensors (Basel) ; 12(1)2021 Dec 29.
Article in English | MEDLINE | ID: covidwho-2276106

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) is still raging all over the world. Hence, the rapid and sensitive screening of the suspected population is in high demand. The nucleocapsid protein (NP) of SARS-CoV-2 has been selected as an ideal marker for viral antigen detection. This study describes a lateral flow immunoassay (LFIA) based on colloidal gold nanoparticles for rapid NP antigen detection, in which sensitivity was improved through copper deposition-induced signal amplification. The detection sensitivity of the developed LFIA for NP antigen detection (using certified reference materials) under the optimized parameters was 0.01 µg/mL and was promoted by three orders of magnitude to 10 pg/mL after copper deposition signal amplification. The LFIA coupled with the copper enhancement technique has many merits such as low cost, high efficiency, and high sensitivity. It provides an effective approach to the rapid screening, diagnosis, and monitoring of the suspected population in the COVID-19 outbreak.


Subject(s)
COVID-19 , Copper , Coronavirus Nucleocapsid Proteins/isolation & purification , Immunoassay , Metal Nanoparticles , Antibodies, Viral , Gold , Humans , Phosphoproteins , SARS-CoV-2 , Sensitivity and Specificity
2.
Anal Bioanal Chem ; 414(23): 6771-6777, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2035027

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 505 million confirmed cases, including over 6 million deaths. Reference materials (RMs) of SARS-CoV-2 RNA played a crucial role in performance evaluation and quality control of testing laboratories. As the potential primary characterization method of RMs, reverse transcription digital PCR (RT-dPCR) measures the copy number of RNA, but the accuracy of reverse transcription (RT) efficiency has yet to be confirmed. This study established a method of enzymatic digestion followed by isotope dilution mass spectrometry (IDMS), which does not require an RT reaction, to quantify in vitro-transcribed SARS-CoV-2 RNA. RNA was digested to nucleotide monophosphate (NMP) within 15 min and analyzed by IDMS within 5 min. The consistency among the results of four different NMPs demonstrated the reliability of the proposed method. Compared to IDMS, the quantitative result of RT-dPCR turned out to be about 10% lower, possibly attributed to the incompleteness of the reverse transcription process. Therefore, the proposed approach could be valuable and reliable for quantifying RNA molecules and evaluating the RT efficiency of RT-based methods.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Isotopes , Mass Spectrometry , Polymerase Chain Reaction , RNA, Viral/analysis , RNA, Viral/genetics , Reproducibility of Results , Reverse Transcription , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2023754

ABSTRACT

Carbohydrate antigen 199 (CA199) is a serum biomarker which has certain value and significance in the diagnosis, prognosis, treatment, and postoperative monitoring of cancer. In this study, a lateral flow immunoassay based on europium (III) polystyrene time-resolved fluorescence microspheres (TRFM-based LFIA), integrated with a portable fluorescence reader, has been successfully establish for rapid and quantitative analysis of CA199 in human serum. Briefly, time-resolved fluorescence microspheres (TRFMs) were conjugated with antibody I (Ab1) against CA199 as detection probes, and antibody II (Ab2) was coated as capture element, and a "TRFMs-Ab1-CA199-Ab2" sandwich format would form when CA199 was detected by the TRFM-based LFIA. Under the optimal parameters, the detection limit of the TRFM-based LFIA for visible quantitation with the help of an ultraviolet light was 4.125 U/mL, which was four times lower than that of LFIA based on gold nanoparticles. Additionally, the fluorescence ratio is well linearly correlated with the CA199 concentration (0.00-66.0 U/mL) and logarithmic concentration (66.0-264.0 U/mL) for quantitative detection. Serum samples from 10 healthy people and 10 liver cancer patients were tested to confirm the performances of the point-of-care application of the TRFM-based LFIA, 20.0 U/mL of CA199 in human serum was defined as the threshold for distinguishing healthy people from liver cancer patients with an accuracy of about 60%. The establishment of TRFM-based LFIA will provide a sensitive, convenient, and efficient technical support for rapid screening of CA199 in cancer diagnosis and prognosis.


Subject(s)
Liver Neoplasms , Metal Nanoparticles , Biomarkers, Tumor , Gold , Humans , Immunoassay , Limit of Detection , Microspheres
4.
Biosensors (Basel) ; 12(2)2022 Feb 07.
Article in English | MEDLINE | ID: covidwho-1674496

ABSTRACT

Neutralizing antibody (NAb) is a family of antibodies with special functions, which afford a degree of protection against infection and/or reduce the risk of clinically severe infection. Receptor binding domain (RBD) in the spike protein of SARS-CoV-2, a portion of the S1 subunit, can stimulate the immune system to produce NAb after infection and vaccination. The detection of NAb against SARS-CoV-2 is a simple and direct approach for evaluating a vaccine's effectiveness. In this study, a direct, rapid, and point-of-care bicolor lateral flow immunoassay (LFIA) was developed for NAb against SARS-CoV-2 detection without sample pretreatment, and which was based on the principle of NAb-mediated blockage of the interaction between RBD and angiotensin-converting enzyme 2. In the bicolor LFIA, red and blue latex microspheres (LMs) were used to locate the test and control lines, leading to avoidance of erroneous interpretations of one-colored line results. Under the optimal conditions, NAb against SARS-CoV-2 detection carried out using the bicolor LFIA could be completed within 9 min, and the visible limit of detection was about 48 ng/mL. Thirteen serum samples were analyzed, and the results showed that the NAb levels in three positive serum samples were equal to, or higher than, 736 ng/mL. The LM-based bicolor LFIA allows one-step, rapid, convenient, inexpensive, and user-friendly determination of NAb against SARS-CoV-2 in serum.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , COVID-19/diagnosis , Chromatography, Affinity , Humans , Latex , Microspheres , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
6.
Signal Transduct Target Ther ; 6(1): 181, 2021 05 10.
Article in English | MEDLINE | ID: covidwho-1223081

ABSTRACT

Over 40% of the coronavirus disease 2019 (COVID-19) COVID-19 patients were asymptomatically infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the immune responses of these asymptomatic individuals is a critical factor for developing the strategy to contain the COVID-19 pandemic. Here, we determined the viral dynamics and antibody responses among 143 asymptomatic individuals identified in a massive screening of more than 5 million people in eight districts of Wuhan in May 2020. Asymptomatic individuals were admitted to the government-designated centralized sites in accordance with policy. The incidence rate of asymptomatic infection is ~2.92/100,000. These individuals had low viral copy numbers (peaked at 315 copies/mL) and short-lived antibody responses with the estimated diminish time of 69 days. The antibody responses in individuals with persistent SARS-CoV-2 infection is much longer with the estimated diminish time of 257 days. These results imply that the immune responses in the asymptomatic individuals are not potent enough for preventing SARS-CoV-2 re-infection, which has recently been reported in recovered COVID-19 patients. This casts doubt on the efficacy of forming "herd-immunity" through natural SARS-CoV-2 infection and urges for the development of safe and effective vaccines.


Subject(s)
Antibodies, Viral/immunology , Asymptomatic Infections/epidemiology , COVID-19/immunology , Immunity/immunology , Aged , Antibodies, Viral/blood , Antibodies, Viral/genetics , COVID-19/blood , COVID-19/physiopathology , COVID-19/virology , China/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
7.
Sens Actuators B Chem ; 331: 129415, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1009880

ABSTRACT

The coronavirus disease 2019 (COVID-19) epidemic continues to ravage the world. In epidemic control, dealing with a large number of samples is a huge challenge. In this study, a point-of-care test (POCT) system was successfully developed and applied for rapid and accurate detection of immunoglobulin-G and -M against nucleocapsid protein (anti-N IgG/IgM) and receptor-binding domain in spike glycoprotein (anti-S-RBD IgG/IgM) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Any one of the IgG/IgM found in a sample was identified as positive. The POCT system contains colloidal gold-based lateral flow immunoassay test strips, homemade portable reader, and certified reference materials, which detected anti-N and anti-S-RBD IgG/IgM objectively in serum within 15 min. Receiver operating characteristic curve analysis was used to determine the optimal cutoff values, sensitivity, and specificity. It exhibited equal to or better performances than four approved commercial kits. Results of the system and chemiluminescence immunoassay kit detecting 108 suspicious samples had high consistency with kappa coefficient at 0.804 (P < 0.001). Besides, the levels and alterations of the IgG/IgM in an inpatient were primarily investigated by the POCT system. Those results suggested the POCT system possess the potential to contribute to rapid and accurate serological diagnosis and epidemiological survey of COVID-19.

8.
Talanta ; 224: 121726, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-894232

ABSTRACT

The outbreak of COVID-19 caused by a novel Coronavirus (termed SARS-CoV-2) has spread to over 210 countries around the world. Currently, reverse transcription quantitative qPCR (RT-qPCR) is used as the gold standard for diagnosis of SARS-CoV-2. However, the sensitivity of RT-qPCR assays of pharyngeal swab samples are reported to vary from 30% to 60%. More accurate and sensitive methods are urgently needed to support the quality assurance of the RT-qPCR or as an alternative diagnostic approach. A reverse transcription digital PCR (RT-dPCR) method was established and evaluated. To explore the feasibility of RT-dPCR in diagnostic of SARS-CoV-2, a total of 196 clinical pharyngeal swab samples from 103 suspected patients, 77 close contacts and 16 supposed convalescents were analyzed by RT-qPCR and then measured by the proposed RT-dPCR. For the 103 fever suspected patients, 19 (19/25) negative and 42 (42/49) equivocal tested by RT-qPCR were positive according to RT-dPCR. The sensitivity of SARS-CoV-2 detection was significantly improved from 28.2% by RT-qPCR to 87.4% by RT-dPCR. For 29 close contacts (confirmed by additional sample and clinical follow up), 16 (16/17) equivocal and 1 negative tested by RT-qPCR were positive according to RT-dPCR, which is implying that the RT-qPCR is missing a lot of asymptomatic patients. The overall sensitivity, specificity and diagnostic accuracy of RT-dPCR were 91%, 100% and 93%, respectively. RT-dPCR is highly accurate method and suitable for detection of pharyngeal swab samples from COVID-19 suspected patients and patients under isolation and observation who may not be exhibiting clinical symptoms.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Coronavirus Envelope Proteins/genetics , Coronavirus Nucleocapsid Proteins/genetics , Humans , Pharynx/virology , Phosphoproteins/genetics , Polyproteins/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL